A class of Steffensen type methods with optimal order of convergence
نویسندگان
چکیده
In this paper, a family of Steffensen type methods of fourth-order convergence for solving nonlinear smooth equations is suggested. In the proposed methods, a linear combination of divided diferences is used to get a better approximation to the derivative of the given function. Each derivative-free member of the family requires only three evaluations of the given function per iteration. Therefore, this class of methods has efficiency index equal to 1.587. Kung and Traub conjectured that the order of convergence of any multipoint method without memory cannot exceed the bound 2d−1, where d is the number of functional evaluations per step. The new class of methods agrees with this conjecture for the case d = 3. Numerical examples are made to show the performance of the presented methods, on smooth and nonsmooth equations, and to compare with other ones.
منابع مشابه
Adaptive Steffensen-like Methods with Memory for Solving Nonlinear Equations with the Highest Possible Efficiency Indices
The primary goal of this work is to introduce two adaptive Steffensen-like methods with memory of the highest efficiency indices. In the existing methods, to improve the convergence order applied to memory concept, the focus has only been on the current and previous iteration. However, it is possible to improve the accelerators. Therefore, we achieve superior convergence orders and obtain as hi...
متن کاملAn Optimal Biparametric Multipoint Family and Its Self-Acceleration with Memory for Solving Nonlinear Equations
In this paper, a family of Steffensen-type methods of optimal order of convergence with two parameters is constructed by direct Newtonian interpolation. It satisfies the conjecture proposed by Kung and Traub (J. Assoc. Comput. Math. 1974, 21, 634–651) that an iterative method based on m evaluations per iteration without memory would arrive at the optimal convergence of order 2m−1. Furthermore, ...
متن کاملA new optimal method of fourth-order convergence for solving nonlinear equations
In this paper, we present a fourth order method for computing simple roots of nonlinear equations by using suitable Taylor and weight function approximation. The method is based on Weerakoon-Fernando method [S. Weerakoon, G.I. Fernando, A variant of Newton's method with third-order convergence, Appl. Math. Lett. 17 (2000) 87-93]. The method is optimal, as it needs three evaluations per iterate,...
متن کاملNumerical Methods for the Optimal Control of Scalar Conservation Laws
We are interested in a class of numerical schemes for the optimization of nonlinear hyperbolic partial differential equations. We present continuous and discretized relaxation schemes for scalar, one– conservation laws. We present numerical results on tracking type problems with nonsmooth desired states and convergence results for higher– order spatial and temporal discretization schemes.
متن کاملOn a New Efficient Steffensen-Like Iterative Class by Applying a Suitable Self-Accelerator Parameter
It is attempted to present an efficient and free derivative class of Steffensen-like methods for solving nonlinear equations. To this end, firstly, we construct an optimal eighth-order three-step uniparameter without memory of iterative methods. Then the self-accelerator parameter is estimated using Newton's interpolation in such a way that it improves its convergence order from 8 to 12 without...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 217 شماره
صفحات -
تاریخ انتشار 2011